<!DOCTYPE html><html lang="en" xmlns="http://www.w3.org/1999/xhtml" xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" style="font-size:16px;"><head></head><head><meta charset="utf-8"/><!--[if !mso]><!--><meta http-equiv="X-UA-Compatible" content="IE=edge"/><!--<![endif]--><meta name="viewport" content="width=device-width,initial-scale=1"/><meta name="x-apple-disable-message-reformatting"/><meta name="format-detection" content="telephone=no,address=no,email=no,date=no,url=no"/><meta name="color-scheme" content="light"/><meta name="supported-color-schemes" content="light"/><title>Apple Enters DiffusionLM Research!?</title><!--[if mso]><xml><o:OfficeDocumentSettings><o:AllowPNG/><o:PixelsPerInch>96</o:PixelsPerInch></o:OfficeDocumentSettings></xml><![endif]--><style> :root { color-scheme: light; supported-color-schemes: light; } body { margin: 0; padding: 0; min-width: 100%!important; -ms-text-size-adjust: 100% !important; -webkit-transform: scale(1) !important; -webkit-text-size-adjust: 100% !important; -webkit-font-smoothing: antialiased !important; } .body { word-wrap: normal; word-spacing:normal; } table.mso { width: 100%; border-collapse: collapse; padding: 0; table-layout: fixed; } img { border: 0; outline: none; } table { mso-table-lspace: 0px; mso-table-rspace: 0px; } td, a, span { mso-line-height-rule: exactly; } #root [x-apple-data-detectors=true], a[x-apple-data-detectors=true], #MessageViewBody a { color: inherit !important; text-decoration: inherit !important; font-size: inherit !important; font-family: inherit !important; font-weight: inherit !important; line-height: inherit !important; } span.MsoHyperlink { color: inherit !important; mso-style-priority: 99 !important; } span.MsoHyperlinkFollowed { color: inherit !important; mso-style-priority: 99 !important; } .a { background-color:#dedede; } .b { background-color:#2a2a2a; } .c { background-color:#ffffff; } .d { background-color:#fff0c8; } .d2 { background-color:#FFFFFF; } .d3 { background-color:#FFFFFF; } h1 a { text-decoration:none;color:#2C81E5;font-style:italic; } h2 a { text-decoration:none;color:#2C81E5;font-style:italic; } h3 a { text-decoration:none;color:#2C81E5;font-style:italic; } h4 a { text-decoration:none;color:#2C81E5;font-style:italic; } h5 a { text-decoration:none;color:#2C81E5;font-style:italic; } h6 a { text-decoration:none;color:#2C81E5;font-style:italic; } h1, h1 a, h2, h2 a, h3, h3 a, h4, h4 a, h5, h5 a, h6, h6 a, ul, li, ol, p, p a { margin: 0;padding: 0; } h1 { font-family:'Trebuchet MS','Lucida Grande',Tahoma,sans-serif;font-weight:700;font-size:28px;color:#2A2A2A;line-height:42px;padding-bottom:4px;padding-top:16px;mso-margin-top-alt:16px;mso-margin-bottom-alt:4px } h2 { font-family:'Trebuchet MS','Lucida Grande',Tahoma,sans-serif;font-weight:700;font-size:24px;color:#2A2A2A;line-height:36px;padding-bottom:4px;padding-top:16px;mso-margin-top-alt:16px;mso-margin-bottom-alt:4px } h3 { font-family:'Trebuchet MS','Lucida Grande',Tahoma,sans-serif;font-weight:400;font-size:20px;color:#2A2A2A;line-height:30px;padding-bottom:4px;padding-top:16px;mso-margin-top-alt:16px;mso-margin-bottom-alt:4px } h4 { font-family:'Trebuchet MS','Lucida Grande',Tahoma,sans-serif;font-weight:400;font-size:18px;color:#2A2A2A;line-height:27px;padding-bottom:4px;padding-top:16px;mso-margin-top-alt:16px;mso-margin-bottom-alt:4px } h5 { font-family:'Trebuchet MS','Lucida Grande',Tahoma,sans-serif;font-weight:400;font-size:16px;color:#2A2A2A;line-height:24px;padding-bottom:4px;padding-top:16px;mso-margin-top-alt:16px;mso-margin-bottom-alt:4px } h6 { font-family:'Trebuchet MS','Lucida Grande',Tahoma,sans-serif;font-weight:400;font-size:14px;color:#2A2A2A;line-height:21px;padding-bottom:4px;padding-top:16px;mso-margin-top-alt:16px;mso-margin-bottom-alt:4px } p { font-family:'Georgia','Times New Roman',serif;font-weight:400;color:#2D2D2D;font-size:16px;line-height:24px;padding-bottom:8px;padding-top:8px;mso-margin-top-alt:8px;mso-margin-bottom-alt:8px; } p a, .e a, ul a, li a, .h a, .h2 a, .h3 a { word-break:break-word;color:#2C81E5 !important;text-decoration:none;font-style:italic; } p a span, .e a span, ul a span, li a span { color: inherit } p .bold { font-weight:bold;color:#2D2D2D; } p span[style*="font-size"] { line-height: 1.6; } .f p { font-size:12px;line-height:15px;color:#2D2D2D;padding:0; } .f p a { color:#2D2D2D !important; } .g p { font-family:'Helvetica',Arial,sans-serif;font-size:14px;line-height:20px;font-weight:normal;margin:0; } .g p a { text-decoration: underline; } .i p { font-family:'Helvetica',Arial,sans-serif;line-height:23px;font-size:15px;color:#2D2D2D; } .i p a { color:#2D2D2D !important; } .i2 p { font-family:'Helvetica',Arial,sans-serif;line-height:23px;font-size:15px;color:#2D2D2D; } .i2 p a { color:#2D2D2D !important; } .i3 p { font-family:'Helvetica',Arial,sans-serif;line-height:43px;font-size:24px;color:#2D2D2D; } .i3 p a { color:#2D2D2D !important; } .h p a { color:#595959 !important; } .h2 p a { color:#595959 !important; } .h3 p a { color:#595959 !important; } .f p a, .i p a, .i2 p a, .i3 p a, .h p a, .h2 p a, .h3 p a { text-decoration:underline; } .j { border-top:3px solid #ffeb2d; } .k p { padding-left:15px;padding-bottom:0px;padding-top:6px;mso-margin-top-alt:6px;mso-margin-bottom-alt:0px;mso-margin-left-alt:15px; } .o { background-color:#FFFFFF;border:1px solid #F1F1F1;border-radius:5px; } .o p { font-family:'Helvetica',Arial,sans-serif;padding:0px;margin:0px; } .l p, .l p a { font-size:14px;line-height:20px;font-weight: bold;color:#2D2D2D;padding-bottom:6px;mso-margin-bottom-alt:6px;text-decoration:none; } .m p, .m p a { font-size:13px;line-height:18px;font-weight:400;color:#2D2D2D;padding-bottom:6px;mso-margin-bottom-alt:6px;text-decoration:none; } .n p, .n p a { font-size:12px;line-height:17px;font-weight:400;color:#2D2D2D;padding-bottom:6px;mso-margin-bottom-alt:6px;text-decoration:none; } .p { background-color:#FFFFFF;max-width:520px;border:1px solid #E1E8ED;border:1px solid rgba(80, 80, 80, 0.3);border-radius:5px; } .q { font-size:16px;font-family:Helvetica,Roboto,Calibri,sans-serif !important;border:1px solid #e1e8ed;border:1px solid rgba(80, 80, 80, 0.3);border-radius:10px;background-color:#FFFFFF; } .q p { font-size:16px;font-family:system-ui,Helvetica,Roboto,Calibri,sans-serif !important;color:#222222;padding:4px 0; } .r { border:1px solid #E1E8ED !important;border-radius:5px; } .s p { font-size: 14px; line-height: 17px; font-weight: 400; color: #697882; text-decoration: none; } .t p { font-family:'Helvetica',Arial,sans-serif;font-size:12px;line-height:18px;font-weight:400;color:#000000;font-style:italic;padding:4px 0px 0px; } .v { border-radius:10px;border:solid 0px #DFD150;background-color:#2C81E5;font-family:'Open Sans','Segoe UI','Apple SD Gothic Neo','Lucida Grande','Lucida Sans Unicode',sans-serif;color:#FFFFFF; } .v a { text-decoration:none;display:block;color:#FFFFFF; } .w p { font-size:12px;line-height:15px;font-weight:400;color:#FFFFFF; } .w p a { text-decoration: underline !important;color:#FFFFFF !important; } ul { font-family:'Helvetica',Arial,sans-serif;margin:0px 0px 0px 25px !important;padding:0px !important;color:#2D2D2D;line-height:24px;list-style:disc;font-size:16px; } ul > li { font-family:'Helvetica',Arial,sans-serif;margin:10px 0px 0px 0px !important;padding: 0px 0px 0px 0px !important; color: #2D2D2D; list-style:disc; } ol { font-family:'Helvetica',Arial,sans-serif;margin: 0px 0px 0px 25px !important;padding:0px !important;color:#2D2D2D;line-height:24px;list-style:decimal;font-size:16px; } ol > li { font-family:'Helvetica',Arial,sans-serif;margin:10px 0px 0px 0px !important;padding: 0px 0px 0px 0px !important; color: #2D2D2D; list-style:decimal; } .e h3, .e p, .e span { padding-bottom:0px;padding-top:0px;mso-margin-top-alt:0px;mso-margin-bottom-alt:0px; } .e span, .e li { font-family:'Helvetica',Arial,sans-serif;font-size:16px;color:#2D2D2D;line-height:24px; } .rec { font-family: ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, "Helvetica Neue", Arial, "Noto Sans", sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol", "Noto Color Emoji" !important; } .rec__button:hover { background-color: #f9fafb !important; } .copyright a {color: inherit !important; text-decoration: none !important; font-size: inherit !important; font-family: inherit !important; font-weight: inherit !important; line-height: inherit !important;} .txt_social p { padding: 0; word-break: break-all; } .table, .table-c, .table-h { border: 1px solid #C0C0C0; } .table-c { padding:5px; background-color:#FFFFFF; } .table-c p { color: #2D2D2D; font-family:'Helvetica',Arial,sans-serif !important;overflow-wrap: break-word; } .table-h { padding:5px; background-color:#F1F1F1; } .table-h p { color: #2A2A2A; font-family:'Trebuchet MS','Lucida Grande',Tahoma,sans-serif !important;overflow-wrap: break-word; } @media only screen and (max-width:667px) { .aa { width: 100% !important; } .bb img { width: 100% !important; height: auto !important; max-width: none !important; } .cc { padding: 0px 8px !important; } .ee { padding-top:10px !important;padding-bottom:10px !important; } .ff ul, .ff ol { margin: 0px 0px 0px 10px !important;padding: 0px !important; } .ff li { margin:10px 0px 0px 10px !important; } .r {height:140px !important;} .s p { font-size:13px !important;line-height:15px !important; } .mob-hide {display:none !important;} .mob-stack {display:block !important;width:100% !important;} .mob-w-full {width:100% !important;} .mob-block {display:block !important;} .embed-img {padding:0px 0px 12px 0px !important;} .socialShare {padding-top:15px !important;} .rec { padding-left:15px!important;padding-right:15px!important; } .bodyWrapper { padding:7px 4px 7px 4px !important; } .social-mobile {float:left !important;margin-top:10px !important;} } @media screen and (max-width: 480px) { u + .a .gg { width: 100% !important; width: 100vw !important; } .tok-heart { padding-top:75% !important; } .tok-play { padding-top: 250px !important; } } @media screen and (max-width: 320px) { .tok-heart { padding-top:65% !important; } } .u { border: 1px solid #CACACA !important; border-radius: 2px !important; background-color: #ffffff !important; padding: 0px 13px 0px 13px !important; font-family:ui-sans-serif,system-ui,-apple-system,BlinkMacSystemFont,"Segoe UI",Roboto,"Helvetica Neue",Arial,"Noto Sans",sans-serif !important;font-size: 12px !important; color: #767676 !important; } .u a { text-decoration: none; display: block !important; color: #767676 !important; margin: 0px !important; } .u span, .u img { color: #767676 !important;margin:0px !important; max-height:32px !important;background-color:#ffffff !important; } </style><!--[if mso]><style type="text/css"> h1, h2, h3, h4, h5, h6 {font-family: Arial, sans-serif !important;} body, table, td, p, a, span {font-family: Arial, sans-serif !important;} sup { font-size: 100% !important;vertical-align: .5em !important;mso-text-raise: -1.5% !important;line-height: 0 !important; } ul { margin-left:0px !important; margin-right:10px !important; margin-top:20px !important; margin-bottom:20px !important; } ul li { margin-left: 0px !important; mso-special-format: decimal; } ol { margin-left:0px !important; margin-right:10px !important; margin-top:20px !important; margin-bottom:20px !important; } ol li { margin-left: 0px !important; mso-special-format: decimal; } li.listItem { margin-left:15px !important; margin-top:0px !important; } .paddingDesktop { padding: 10px 0 !important; } .edm_outlooklist { margin-left: -20px !important; } .embedImage { display:none !important; } </style><![endif]--><style> @font-face { font-family: 'Open Sans'; font-style: normal; font-weight: 700; font-display: swap; src: url('https://fonts.gstatic.com/s/opensans/v40/memSYaGs126MiZpBA-UvWbX2vVnXBbObj2OVZyOOSr4dVJWUgsg-1x4gaVIUwaEQbjA.woff2') format('woff2'); } @font-face { font-family: 'Open Sans'; font-style: italic; font-weight: 700; font-display: swap; src: url('https://fonts.googleapis.com/css2?family=Open+Sans:ital,wght@1,700&display=swap') format('woff2'); } </style></head><body class="a" style="margin:0px auto;padding:0px;word-wrap:normal;word-spacing:normal;background-color:#dedede;"><div role="article" aria-roledescription="email" aria-label="email_name" lang="en" style="font-size:1rem"><div style="display:none;max-height:0px;overflow:hidden;"> plus more about RLVR Generalization without Verifiers and VLM can think visually without generating pixels  ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ ‌ </div><table role="none" width="100%" border="0" cellspacing="0" align="center" cellpadding="0" class="gg"><tr><td align="center" valign="top"><table role="none" width="670" border="0" cellspacing="0" cellpadding="0" class="aa" style="width:670px;table-layout:fixed;"><tr><td class="bodyWrapper" align="center" valign="top" style="padding:7px 7px 7px 7px;"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" align="center"><tr><td align="center" valign="top" style="border-width:0px 0px 0px 0px;border-style: solid; border-color: #2a2a2a;border-radius:10px 10px 0px 0px;background-color:#ffffff;" class="c"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" align="center"><tr id="header"><td style="padding:28px 28px 0px 28px;"><div style="padding-top:0px;padding-right:0px;padding-bottom:20px;padding-left:0px;"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" align="center"><tr><td class="f" align="right" valign="top"><p> July 01, 2025 | <a href="https://elink4f7.mail.bycloud.ai/ss/c/u001.c6q0w4g5sodbtO4I1B_pxSdB5RCIH6yy1Fm1CYma3Ezr531hsUmx5Ws0bEJ83LibHqs0mVTJdHJHrWHKwoAy_Csv4BvTUJzW1HGyz0LHW-IORcwPE6WLWeZ1kSf-E5-lwuwzOIun1Ek7rbTWu9OnXTv2nw7EEzCIS6bxzCYm_Ph8IBEdXyZDhxR7MyS8irsVo5pUF5xZXEGCtE82KnMtQg/4ht/Vi_2DwfsSZ-AFzYkxdSuww/h0/h001.qVdJ00CkETboVFC02UTj0koSL2NFNyGWMVYux5mkOtA">Read Online</a></p></td></tr><tr><td class="dd" align="center" valign="top" style="padding:15px 0;"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" align="center"><tr><td align="center" valign="top"><h1 style="text-align:left;font-family:'Open Sans','Segoe UI','Apple SD Gothic Neo','Lucida Grande','Lucida Sans Unicode',sans-serif;font-weight:Bold;font-size:32px;color:#2A2A2A;padding:2px 0;line-height:38px;"> Apple Joins DiffusionLM Research </h1><p style="text-align:left;font-family:'Helvetica',Arial,sans-serif;font-weight:normal;font-size:20px;color:#3E3E3E;padding:5px 0;line-height:24px;"> plus more about RLVR Generalization without Verifiers and VLM can think visually without generating pixels </p></td></tr></table></td></tr><tr><td style="height:0px;width:0px;"><div style="height:1px;" data-open-tracking="true"> <img src="https://elink4f7.mail.bycloud.ai/ss/o/u001.3wmUuY8gEWd4_869a_eXcg/4ht/Vi_2DwfsSZ-AFzYkxdSuww/ho.gif" alt="" width="1" height="1" border="0" style="height:1px !important;width:1px !important;border-width:0 !important;margin-top:0 !important;margin-bottom:0 !important;margin-right:0 !important;margin-left:0 !important;padding-top:0 !important;padding-bottom:0 !important;padding-right:0 !important;padding-left:0 !important;"/> </div></td></tr></table></div></td></tr><tr id="content-blocks"><td class="email-card-body" align="center" valign="top" style="padding-bottom:28px;"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" align="center"><tr><td id="nov-18-th-nov-24-th-33-latest-ai-re" class="dd" align="left" valign="top" style="color:#2A2A2A;font-weight:normal;padding:0px 28px;text-align:left;"><h6 style="color:#2A2A2A;font-weight:normal;mso-line-height-alt:87.5%;"><i>June 23rd ~ June 30th</i><br><i>#62 Latest AI Research Explained Simply</i></h6></td></tr><tr><td><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" style=""><tr><td bgcolor="#222222" style="background-color:#222222;padding:0.0px 0.0px 0.0px 0.0px;"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0"><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"></p></td></tr></table></td></tr></table></td></tr><tr><td id="industry-news-in-1-line" class="dd" align="left" valign="top" style="color:#2A2A2A;font-weight:Bold;padding:0px 28px;text-align:left;"><h2 style="color:#2A2A2A;font-weight:Bold;mso-line-height-alt:150.0%;">🗞️ Industry News in 1 Line</h2></td></tr><tr><td style="padding-bottom:12px;padding-left:50px;padding-right:40px;padding-top:12px;" class="ee"><div style="margin-left:0px;" class="edm_outlooklist"><ol start="1" style="list-style-type:decimal;margin:0px 0px;padding:0px 0px 0px 0px;"><li class="listItem ultext"><p style="mso-line-height-alt:150.0%;padding:0px;text-align:left;word-break:break-word;"><span style="background-color:#e0e0e0;"><span style="color:rgb(255, 58, 58);font-size:0.6rem;">♥ 489</span></span> Baidu introduces ERNIE 4.5, ten dense and MoE LLM variants, ranging from a 0.3 B model to a 424 B-parameter system with 47 B active parameters, that collectively enable scalable language-and-vision reasoning through post-training and multimodal thinking modes. <a class="link" href="https://elink4f7.mail.bycloud.ai/ss/c/u001.S3-S-66rObX2TUuSZjz2bii8Ykd2P1sYIZ_eFWOOiIeBfUCsOXmQ-Bp1TNp8dszNtv3BDkTAeu7zDP6E4rXtbBZiTsnJ-rdZkjn47hD6wW3YikI8vu7cH5mVYsp8XOtMMsSxedTzb97znBr-NJT3m1jBH7ftNqW87m7juG8dwvs/4ht/Vi_2DwfsSZ-AFzYkxdSuww/h1/h001.GlyTMhPMpemYUT9HpGsvVbMSdiEJ8bK1efAWN0g8to8" target="_blank" rel="noopener noreferrer nofollow"><span>Read their technical report</span></a> or try out on <a class="link" href="https://elink4f7.mail.bycloud.ai/ss/c/u001.fUNb4GdFo9D3F8WuLArtoSei9dcX3RfiBPCzzNmeSiVo8hi-N2F5M9T7jdpNYDU_9cCZEah4IXGwZEJfJsJhQtfCvaLjK3_fr5tSjxYsS4G9ltD7X57JpPlBvM41TsNh/4ht/Vi_2DwfsSZ-AFzYkxdSuww/h2/h001.Ax9CcSxWPZgi9FOau2FkcKSPHurSZw0NGsWFTbKHtAQ" target="_blank" rel="noopener noreferrer nofollow"><span>Baidu AI Studio</span></a>. </p><table role="none" border="0" cellspacing="0" cellpadding="0" style="margin:0 auto 0 auto;"><tr><td align="center" valign="top" style="width:480px;"><img src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/uploads/asset/file/d647fca8-1cc7-472d-a6cd-d4623ff68f8e/image.png?t=1751390630" alt="" height="auto" width="480" style="display:block;width:100%;" border="0"/></td></tr><tr><td align="center" valign="top" class="t" style="width:480px;"><p>ERNIE-4.5</p></td></tr></table></li><li class="listItem ultext"><p style="mso-line-height-alt:150.0%;padding:0px;text-align:left;word-break:break-word;"><span style="background-color:#e0e0e0;"><span style="color:rgb(255, 58, 58);font-size:0.6rem;">♥ 1.3k</span></span> Hunyuan-A13B is an open-source MoE LLM with 80 B parameters (13 B active) that couples a hybrid fast-and-slow reasoning architecture and advanced agentic tool-calling to match o1 and DeepSeek across mainstream benchmarks, excel at long-text tasks, and arrives with the new ArtifactsBench and C3-Bench datasets for richer code and agent-centric evaluation. <a class="link" href="https://elink4f7.mail.bycloud.ai/ss/c/u001.CxDkkVpJsBdVoe83c_tBWnOGGhru43GZD25effOEZg32LHuWfXUJaQtZMj1sTCM1W4P8PNu2yb1uxDQccZ8ONr915TUvh9fHkLmT3lK40prpKxU_UxgVpxXN_C0m66Qk/4ht/Vi_2DwfsSZ-AFzYkxdSuww/h3/h001.Jcx_sVs47bgGmwxzf0xJG9IhJ6ZCJiC-z4JBMB9TtEk" target="_blank" rel="noopener noreferrer nofollow"><span>Try it out now</span></a>. </p><table role="none" border="0" cellspacing="0" cellpadding="0" style="margin:0 auto 0 auto;"><tr><td align="center" valign="top" style="width:480px;"><img src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/uploads/asset/file/260fd3b2-bc59-4042-9c85-1905b81d7dac/image.png?t=1751390922" alt="" height="auto" width="480" style="display:block;width:100%;" border="0"/></td></tr><tr><td align="center" valign="top" class="t" style="width:480px;"><p>Hunyuan-A13B benchmark</p></td></tr></table></li><li class="listItem ultext"><p style="mso-line-height-alt:150.0%;padding:0px;text-align:left;word-break:break-word;"><span style="background-color:#e0e0e0;"><span style="color:rgb(255, 58, 58);font-size:0.6rem;">♥ 1.4k</span></span> Qwen-VLo is a multimodal generative model that converts rough sketches or multilingual text prompts into high-resolution visuals, enables real-time style and layout edits, and incrementally composes complex scenes via progressive generation that can accelerate creative workflows. <a class="link" href="https://elink4f7.mail.bycloud.ai/ss/c/u001.uti9wF3fCIFobtVI6Mhle0mGmLYQ1c7zAgW8oktKR85i5jlFBOPJJGKmxiEzOq-g6_3jEYm8_o24-Prs8xWPsy5p98uBZgjXAUduCONWKLtOG0zEYpHbLmxquq2v-imw/4ht/Vi_2DwfsSZ-AFzYkxdSuww/h4/h001.bSsnrblUuQ7bQBhXzcZK5lOVKjz-Q_yNj6ew6OOloxw" target="_blank" rel="noopener noreferrer nofollow"><span>Read more about it</span></a> or <a class="link" href="https://elink4f7.mail.bycloud.ai/ss/c/u001.ZsobsZmG6kUZ4LjqczYBVMIw9rULhDljzuwgaBxN7zyOJ9zRngkAn_9GqxedQt0o349MYNElkFCOmxqtFPdU4rs_njrQsxomG3EU012_rmY/4ht/Vi_2DwfsSZ-AFzYkxdSuww/h5/h001.8T9lmkFUZDzv_PZCah89wNRxLFH9RvYt85x9ffJ1qdg" target="_blank" rel="noopener noreferrer nofollow"><span>try it out now</span></a>. </p><table role="none" border="0" cellspacing="0" cellpadding="0" style="margin:0 auto 0 auto;"><tr><td align="center" valign="top" style="width:510px;"><img src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/uploads/asset/file/3e0e47b7-d302-4c31-8fb9-2beddb333536/Screenshot_2025-07-01_at_1.34.50_PM.png?t=1751391295" alt="" height="auto" width="510" style="display:block;width:100%;border-radius:0px 0px 0px 0px;border-style:solid;border-width:0px 0px 0px 0px;box-sizing:border-box;border-color:#E5E7EB;" border="0"/></td></tr><tr><td align="center" valign="top" class="t" style="width:510px;"><p>Qwen VLo interaction</p></td></tr></table></li></ol></div></td></tr><tr><td><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" style=""><tr><td bgcolor="#222222" style="background-color:#222222;padding:0.0px 0.0px 0.0px 0.0px;"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0"><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"></p></td></tr></table></td></tr></table></td></tr><tr><td><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" style=""><tr><td bgcolor="transparent" style="background-color:transparent;border-color:#2C81E5;border-style:solid;border-width:5px;padding:0.0px 0.0px 0.0px 0.0px;"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0"><tr><td class="dd" align="left" valign="top" style="color:#2A2A2A;font-weight:Bold;padding:0px 28px;text-align:left;"><h2 style="color:#2A2A2A;font-weight:Bold;mso-line-height-alt:150.0%;"><span style="">Support My Newsletter</span></h2></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"><span style="color:rgb(34, 34, 34);font-family:Georgia, "Times New Roman", serif;font-size:16px;">As I aim to keep this newsletter free forever, your support means a lot. If you like reading The AI Timeline, consider forwarding it to another research enthusiast, It helps us keep this up for free!</span></p></td></tr><tr><td align="center" valign="top"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" align="center"><tr><td align="center" valign="top" style="font-size:0px;line-height:0px;padding:30px 0px 30px;" class="dd"><table class="j" role="none" width="50%" border="0" cellspacing="0" cellpadding="0" align="center"><tr><td> </td></tr></table></td></tr><tr><td class="dd" align="left" valign="top" style="color:#2A2A2A;font-weight:Bold;padding:0px 28px;text-align:left;"><h2 style="color:#2A2A2A;font-weight:Bold;mso-line-height-alt:150.0%;">Share The AI Timeline</h2></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> You currently have <strong>0</strong> referrals. </p></td></tr><tr><td align="left" valign="top" style="padding-bottom:20px;padding-left:28px;padding-right:28px;padding-top:20px; display:none;width:0px;max-height:0px;overflow:hidden;mso-hide:all;height:0;font-size:0;max-height:0;line-height:0;margin:0 auto;" class="dd"><table role="none" border="0" cellspacing="0" cellpadding="0" style="margin:0 auto 0 0;"><tr><td align="center" valign="top" style="width:300px;"><a href="https://elink4f7.mail.bycloud.ai/ss/c/u001.c6q0w4g5sodbtO4I1B_pxWc4htTObwdorovK0nFHVH-4pUdVE0ELYH5DsNemk732SjNwhPNJ25r0O8B5vYifsGNUqyW5TiZkyMsF1yreu0byy2KW36J1wDdpoLuXg2TU1F1OW8OHoHaU4-ZmrZpPU4RN-crQCEimD190CSn9fPvQfHEYx7CTSXIidbla7LLK/4ht/Vi_2DwfsSZ-AFzYkxdSuww/h6/h001.noCOIupeh4AdBF8T5oU5ZLvZeFKP4pxgXL9VNPkXln0" rel="noopener noreferrer nofollow" style="text-decoration:none;" target="_blank"><img src="" alt="" height="auto" width="300" style="display:block;width:100%;" border="0"/></a></td></tr></table></td></tr><tr><td align="left" valign="top" style="padding-bottom:14px;padding-left:28px;padding-right:28px;padding-top:14px;text-align:left;width:100%;word-break:break-word;" class="dd"><table role="none" border="0" cellspacing="0" cellpadding="0" align="left" style="margin:14px auto 14px auto;"><tr><td align="center" valign="middle" height="44.75" style="height:44.75px;background-color:#2C81E5;border-color:#DFD150;border-radius:10px 10px 10px 10px;border-style:solid;border-width:0px 0px 0px 0px;color:#FFFFFF;font-family:'Open Sans','Segoe UI','Apple SD Gothic Neo','Lucida Grande','Lucida Sans Unicode',sans-serif;"><a href="https://elink4f7.mail.bycloud.ai/ss/c/u001.c6q0w4g5sodbtO4I1B_pxWc4htTObwdorovK0nFHVH-4pUdVE0ELYH5DsNemk732SjNwhPNJ25r0O8B5vYifsGNUqyW5TiZkyMsF1yreu0byy2KW36J1wDdpoLuXg2TU1F1OW8OHoHaU4-ZmrZpPU4RN-crQCEimD190CSn9fPvQfHEYx7CTSXIidbla7LLK/4ht/Vi_2DwfsSZ-AFzYkxdSuww/h7/h001.cY0fKAnlU7oYA-4noCARWoZeA-fmE9cz1MkO8HZYSeU" target="_blank" rel="noopener noreferrer nofollow" style="color:#FFFFFF;display:block;font-size:16px;font-size:16px;font-weight:normal;padding:0px 14px;padding:14px 14px 14px 14px;text-decoration:none;"> Click to Share </a></td></tr></table></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> Or copy and paste this link to others: <a class="link" href="https://mail.bycloud.ai/subscribe?ref=6SqUHb8KiF&_bhlid=bf7a73b936aab597b0df9777ef50b28c5a049d32" target="_blank" rel="noopener noreferrer nofollow" clicktracking="off"><span>https://mail.bycloud.ai/subscribe?ref=6SqUHb8KiF</span></a></p></td></tr><tr><td align="center" valign="top" style="font-size:0px;line-height:0px;padding:30px 0px 30px;" class="dd"><table class="j" role="none" width="50%" border="0" cellspacing="0" cellpadding="0" align="center"><tr><td> </td></tr></table></td></tr></table></td></tr><tr><td align="center" valign="top" style="padding-bottom:14px;padding-left:28px;padding-right:28px;padding-top:14px;text-align:center;width:100%;word-break:break-word;" class="dd"><table role="none" border="0" cellspacing="0" cellpadding="0" align="center" style="margin:14px auto 14px auto;"><tr><td align="center" valign="middle" height="44.75" style="height:44.75px;background-color:#2C81E5;border-color:#DFD150;border-radius:10px 10px 10px 10px;border-style:solid;border-width:0px 0px 0px 0px;color:#FFFFFF;font-family:'Open Sans','Segoe UI','Apple SD Gothic Neo','Lucida Grande','Lucida Sans Unicode',sans-serif;"><a href="https://elink4f7.mail.bycloud.ai/ss/c/u001.zNfxTwpJFmrsCuJJphGRkKSrCVph9-fOYkcjx4VfJRwtQQsKrZC8pi-PiKai2fq4lAto9WepTJo69aQJ1T73b1BYaJHeCrLz1cWpFYfpKjdJ071BkzwRo9IrCS5YAIxy/4ht/Vi_2DwfsSZ-AFzYkxdSuww/h8/h001.3cQ-xlrbLOREKwjRozLL3Pf3NueWYZi5hukg9UzOP0c" target="_blank" rel="noopener noreferrer nofollow" style="color:#FFFFFF;display:block;font-size:16px;font-size:16px;font-weight:normal;padding:0px 14px;padding:14px 14px 14px 14px;text-decoration:none;"> Check Out My Patreon </a></td></tr></table></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"><span style=""><sub><a class="link" href="https://elink4f7.mail.bycloud.ai/ss/c/u001.tLfGW26lAwaS9gFg17HSoGymQ3NNPtd5dE5MV_8UgjIDFPVXngz8pvQBldSW42yhUe_Qiq6DgEPMEBuPL9yfRpXelTiuu2kS8pLFvsoem_XoZoy_n13sTKUhZIbl0VH6/4ht/Vi_2DwfsSZ-AFzYkxdSuww/h9/h001.W0SLf1pyD7mDDbicNo9-IjdcOcqrGXrBPiMjRTGtCaQ" target="_blank" rel="noopener noreferrer nofollow"><span>Advertise with The AI Timeline! </span></a></sub></span></p></td></tr></table></td></tr></table></td></tr><tr><td><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" style=""><tr><td bgcolor="#222222" style="background-color:#222222;padding:0.0px 0.0px 0.0px 0.0px;"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0"><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"></p></td></tr></table></td></tr></table></td></tr><tr><td id="rlpr-extrapolating-rlvr-to-general-" class="dd" align="left" valign="top" style="color:#2A2A2A;font-weight:Bold;padding:0px 28px;text-align:left;"><h2 style="color:#2A2A2A;font-weight:Bold;mso-line-height-alt:150.0%;">RLPR: Extrapolating RLVR to General Domains without Verifiers </h2></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"><span style=""><i>Yu et al. [Tsinghua University, National University of Singapore, Shanghai Qi Zhi Institute, Harbin Institute of Technology, Beijing University of Posts and Telecommunications, University of Illinois Urbana-Champaign]</i></span></p></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"><span style="background-color:#e0e0e0;"><span style="color:rgb(255, 58, 58);font-size:0.6rem;"> ♥ 240 </span></span><span style="color:rgb(44, 129, 229);font-size:0.6rem;"> </span><span style="background-color:#e0e0e0;"><span style="color:rgb(44, 129, 229);font-size:0.6rem;"> LLM RLVR </span></span></p></td></tr><tr><td id="introduction-to-rlpr" class="dd" align="left" valign="top" style="color:#2A2A2A;font-weight:normal;padding:0px 28px;text-align:left;"><h3 style="color:#2A2A2A;font-weight:normal;mso-line-height-alt:125.0%;"><span style="color:rgb(67, 67, 67);">Introduction to RLPR</span></h3></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> In the past few weeks, we have seen that Reinforcement Learning with Verifiable Rewards (RLVR) offers promising results for improving reasoning in language models, especially in structured domains like math and code. But it hits a wall in broader areas like science or open-ended questions. This is mainly because RLVR relies on custom verifiers, rule-based systems or trained models, to judge answers. Building these systems for every new domain is complex and often impossible for free-form responses. This limitation blocks progress in general reasoning. </p></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> In this paper, the researchers have proposed RLPR which uses a language model’s own confidence: the probability it assigns to correct reference answers, instead of external verifiers. This simple change allows using RLVR for any domain. </p></td></tr><tr><td align="center" valign="top" style="padding-bottom:20px;padding-left:28px;padding-right:28px;padding-top:20px; " class="dd"><table role="none" border="0" cellspacing="0" cellpadding="0" style="margin:0 auto 0 auto;"><tr><td align="center" valign="top" style="width:600px;"><img src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/uploads/asset/file/b01f6f76-8a97-4207-8419-fdb314fdf58f/performance_fig1.png?t=1751386153" alt="" height="auto" width="600" style="display:block;width:100%;" border="0"/></td></tr><tr><td align="center" valign="top" class="t" style="width:600px; padding: 4px 0px 4px 0px;"><p>RLPR achieves better reasoning capability enchancement on both mathematical and general-domain reasoning benchmarks, even surpassing strong methods using verifier models.</p></td></tr></table></td></tr><tr><td id="inner-mechanism-of-rlpr" class="dd" align="left" valign="top" style="color:#2A2A2A;font-weight:normal;padding:0px 28px;text-align:left;"><h3 style="color:#2A2A2A;font-weight:normal;mso-line-height-alt:125.0%;"><span style="color:rgb(67, 67, 67);">Inner Mechanism of RLPR</span></h3></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> The RLPR mechanism calculates rewards differently. For a given question, the model generates reasoning steps and an answer. Normally, a verifier would score correctness. Here, RLPR replaces the generated answer with the reference one and checks the model’s token-level probabilities for that reference. The average probability across tokens becomes the reward. Using the mean (not product) avoids sensitivity to single low-probability words, making rewards robust. </p></td></tr><tr><td align="center" valign="top" style="padding-bottom:20px;padding-left:28px;padding-right:28px;padding-top:20px; " class="dd"><table role="none" border="0" cellspacing="0" cellpadding="0" style="margin:0 auto 0 auto;"><tr><td align="center" valign="top" style="width:600px;"><img src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/uploads/asset/file/4c05f20f-4ce5-407c-b01a-7d25656aa02d/framework.png?t=1751386170" alt="" height="auto" width="600" style="display:block;width:100%;" border="0"/></td></tr><tr><td align="center" valign="top" class="t" style="width:600px; padding: 4px 0px 4px 0px;"><p>RLPR features an efficient Probability-based Reward (PR) using average decoding probabilities of reference answers.</p></td></tr></table></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> But raw probabilities can be noisy. If the model already assigns high probability to a reference answer without any reasoning, that skews results. RLPR fixes this with debiasing. It subtracts the probability score of generating the reference answer directly, without intermediate reasoning, from the original reward. This isolates the contribution of the reasoning steps themselves. </p></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> After changing rewards, it was challenging to achieve training stability. Rewards varied wildly between easy and hard prompts. RLPR filters out prompts with low reward variance (indicating overly simple or impossible tasks) using a dynamic threshold. This adaptive curriculum learning keeps training focused on useful samples and improves reliability. </p></td></tr><tr><td align="center" valign="top" style="padding-bottom:20px;padding-left:28px;padding-right:28px;padding-top:20px; " class="dd"><table role="none" border="0" cellspacing="0" cellpadding="0" style="margin:0 auto 0 auto;"><tr><td align="center" valign="top" style="width:600px;"><img src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/uploads/asset/file/488894bf-9893-4048-8967-85e823f13f06/PR_quality.png?t=1751386192" alt="" height="auto" width="600" style="display:block;width:100%;" border="0"/></td></tr><tr><td align="center" valign="top" class="t" style="width:600px; padding: 4px 0px 4px 0px;"><p>PR exhibits better reward quality compared with rule-based, model-based reward, and naive likelihood as a reward.</p></td></tr></table></td></tr><tr><td id="evaluating-rlpr-on-benchmarks" class="dd" align="left" valign="top" style="color:#2A2A2A;font-weight:normal;padding:0px 28px;text-align:left;"><h3 style="color:#2A2A2A;font-weight:normal;mso-line-height-alt:125.0%;"><span style="color:rgb(67, 67, 67);">Evaluating RLPR on Benchmarks</span></h3></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> This paper tested RLPR across seven benchmarks, four general-domain (e.g., MMLU-Pro, TheoremQA) and three math-focused (e.g., Minerva), using models like Gemma, Llama, and Qwen. Without verifiers, it <span style="font-weight:700;"><b>consistently outperformed baselines</b></span>. On TheoremQA, RLPR beat the verifier-free VeriFree by 7.6 points and surpassed General-Reasoner (which uses a 1.5B verifier model) by 1.6 points on average. It even <span style="font-weight:700;"><b>excelled in math domains</b></span>, improving Minerva scores by 7.5 points over VeriFree. </p></td></tr><tr><td align="center" valign="top" style="padding-bottom:20px;padding-left:28px;padding-right:28px;padding-top:20px; " class="dd"><table role="none" border="0" cellspacing="0" cellpadding="0" style="margin:0 auto 0 auto;"><tr><td align="center" valign="top" style="width:600px;"><img src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/uploads/asset/file/0d8b63bd-a9e8-4755-b200-be7c2903820d/robustness.png?t=1751386212" alt="" height="auto" width="600" style="display:block;width:100%;" border="0"/></td></tr><tr><td align="center" valign="top" class="t" style="width:600px; padding: 4px 0px 4px 0px;"><p>RLPR with different training prompt templates and find it achieves robustness reasoning capability enhancement.</p></td></tr></table></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> The probability reward proved highly reliable. In tests, it matched human judgments better than rule-based verifiers in general domains and rivaled specialized verifier models in math. By eliminating verifiers, RLPR opens doors to training on diverse, real-world data. In future work, we can see this technique being used to refine reward stability or explore hybrid approaches for niche domains. </p></td></tr><tr><td align="center" valign="top" style="padding:14px 32px 14px 32px;" class="dd"><a href="https://elink4f7.mail.bycloud.ai/ss/c/u001.VomAAYwkCjux8i_FMc4kJULQL537r5v6OAmHDqa1l5YZ9hztSq9X3InhlO1L0iSEeu9siX3xut0W-Stqu9SitvSJewej2iQBgFOFJz3S4jfEqPF5ARmPXo7RZ1uHP15w/4ht/Vi_2DwfsSZ-AFzYkxdSuww/h10/h001.k0AMI_zRjzakDN-TQh0pJpD7NGZT97rc26Llijj0v8w" style="text-decoration:none;" target="_blank"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" align="center" style="margin-bottom:12px;margin-top:12px;padding-left:12px;padding-right:12px;"><tr><td align="center" valign="top" class="o" style="padding:12px 12px 12px 12px;;background-color:#FFFFFF;border-color:#F1F1F1;border-radius:5px 5px 5px 5px;border-width:1px 1px 1px 1px;"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" align="center"><tr><!--[if mso]><td width="0"><table cellpadding="0" cellspacing="0" border="0" role="presentation" style="display:none;"><tr><![endif]--><td class="mob-stack embed-img" align="center" valign="top" style="width:35%;min-height:100px;vertical-align:middle;padding:0px 12px 0px 0px;"><a href="https://elink4f7.mail.bycloud.ai/ss/c/u001.VomAAYwkCjux8i_FMc4kJULQL537r5v6OAmHDqa1l5YL-69M4uWAm9aBnTWSejI0oSFnYL5o6ruBte9XOIuIF_KXVZmLq-A6UQr7GvHEXIXdujhY7XvYuuzwvJAn-9r6/4ht/Vi_2DwfsSZ-AFzYkxdSuww/h11/h001.HYsye8_EQMhwI0435a-u_EHwyZHE8FlsiGedU3qRtoU" style="text-decoration:none;" target="_blank"><img src="https://opengraph.githubassets.com/5db6c4e5120f942ed22175ff49a74ae4fd2652e056268a58839f04ed3d3e31cc/OpenBMB/RLPR" width="100%" style="display:block;"/></a></td><!--[if mso]></tr></table></td><![endif]--><td class="mob-stack" align="center" valign="top" class="cc"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" align="center"><tr><td align="left" valign="top" class="l"><p>GitHub - OpenBMB/RLPR: Extrapolating RLVR to General Domains without Verifiers</p></td></tr><tr><td align="left" valign="top" class="m"><p>Extrapolating RLVR to General Domains without Verifiers - OpenBMB/RLPR</p></td></tr><tr><td align="left" valign="bottom" class="n" style="vertical-align:bottom;padding-top:12px;"><p style="word-break:break-word;">github.com/OpenBMB/RLPR</p></td></tr></table></td></tr></table></td></tr></table></a></td></tr><tr><td align="center" valign="top" style="padding-bottom:14px;padding-left:28px;padding-right:28px;padding-top:14px;text-align:center;width:100%;word-break:break-word;" class="dd"><table role="none" border="0" cellspacing="0" cellpadding="0" align="center" style="margin:14px auto 14px auto;"><tr><td align="center" valign="middle" height="44.75" style="height:44.75px;background-color:#2C81E5;border-color:#DFD150;border-radius:10px 10px 10px 10px;border-style:solid;border-width:0px 0px 0px 0px;color:#FFFFFF;font-family:'Open Sans','Segoe UI','Apple SD Gothic Neo','Lucida Grande','Lucida Sans Unicode',sans-serif;"><a href="https://elink4f7.mail.bycloud.ai/ss/c/u001.fUNb4GdFo9D3F8WuLArtoV5sElgytBlvJRzI9WtI92baybSTHKtGtPf4zwwgXrjxxzXJ-XreAsw8-RaFdzVuKkQngnkUy2UQ1kOEh3oqds3DzeHC_9U7xgiXD93U40ge/4ht/Vi_2DwfsSZ-AFzYkxdSuww/h12/h001.iOFLBwyJjduJ0PNi72esRzWAUW68wToTCyfkP5zLed0" target="_blank" rel="noopener noreferrer nofollow" style="color:#FFFFFF;display:block;font-size:16px;font-size:16px;font-weight:normal;padding:0px 14px;padding:14px 14px 14px 14px;text-decoration:none;"> Read Full Paper </a></td></tr></table></td></tr><tr><td><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" style=""><tr><td bgcolor="#222222" style="background-color:#222222;padding:0.0px 0.0px 0.0px 0.0px;"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0"><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"></p></td></tr></table></td></tr></table></td></tr><tr><td id="diffu-coder-understanding-and-impro" class="dd" align="left" valign="top" style="color:#2A2A2A;font-weight:Bold;padding:0px 28px;text-align:left;"><h2 style="color:#2A2A2A;font-weight:Bold;mso-line-height-alt:150.0%;">DiffuCoder: Understanding and Improving Masked Diffusion Models for Code Generation</h2></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"><span style=""><i>Gong et al. [Apple, The University of Hong Kong]</i></span></p></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"><span style="background-color:#e0e0e0;"><span style="color:rgb(255, 58, 58);font-size:0.6rem;"> ♥294 </span></span><span style="color:rgb(44, 129, 229);font-size:0.6rem;"> </span><span style="background-color:#e0e0e0;"><span style="color:rgb(44, 129, 229);font-size:0.6rem;"> DiffusionLM </span></span><span style="color:rgb(44, 129, 229);font-size:0.6rem;"> </span><span style="background-color:#e0e0e0;"><span style="color:rgb(44, 129, 229);font-size:0.6rem;"> bycloud’s pick </span></span><span style="color:rgb(44, 129, 229);font-size:0.6rem;"> </span></p></td></tr><tr><td id="introduction-to-diffu-coder" class="dd" align="left" valign="top" style="color:#2A2A2A;font-weight:normal;padding:0px 28px;text-align:left;"><h3 style="color:#2A2A2A;font-weight:normal;mso-line-height-alt:125.0%;"><span style="color:rgb(67, 67, 67);">Introduction to DiffuCoder</span></h3></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> LLMs can generate paragraphs of text easily but code generation often requires jumping back and forth to refine logic, which doesn’t always fit the left-to-right approach of autoregressive models. Diffusion large language models (dLLMs) offer an alternative by refining entire code sequences in parallel, enabling global planning. However, their decoding behavior and training methods for coding tasks remain underexplored. </p></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> To address this, the authors of this paper developed DiffuCoder, a 7-billion-parameter dLLM trained on 130 billion code tokens. They analyzed its unique generation patterns and introduced coupled-GRPO, a reinforcement learning method designed to enhance performance without compromising the model’s non-autoregressive strengths. </p></td></tr><tr><td align="center" valign="top" style="padding-bottom:20px;padding-left:28px;padding-right:28px;padding-top:20px; " class="dd"><table role="none" border="0" cellspacing="0" cellpadding="0" style="margin:0 auto 0 auto;"><tr><td align="center" valign="top" style="width:600px;"><img src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/uploads/asset/file/0295db40-31bc-4593-a86c-ec383389b9be/teaser.png?t=1751386425" alt="" height="auto" width="600" style="display:block;width:100%;" border="0"/></td></tr></table></td></tr><tr><td id="inner-workings-of-diffu-coder" class="dd" align="left" valign="top" style="color:#2A2A2A;font-weight:normal;padding:0px 28px;text-align:left;"><h3 style="color:#2A2A2A;font-weight:normal;mso-line-height-alt:125.0%;"><span style="color:rgb(67, 67, 67);">Inner Workings of DiffuCoder</span></h3></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> The DiffuCoder model uses a masked diffusion approach. During training, it corrupts code sequences by randomly masking tokens and learns to reconstruct them step by step. Unlike autoregressive models that predict tokens sequentially, this method allows flexible refinement of any part of the sequence. The model’s decoding exhibits an "entropy sink" phenomenon: it initially shows high confidence in tokens near the given prefix, creating a bias toward left-to-right generation. But by raising the sampling temperature, the model becomes less autoregressive, diversifying not just which tokens are chosen but also their generation order. This flexibility enables more parallel processing. </p></td></tr><tr><td align="center" valign="top" style="padding-bottom:20px;padding-left:28px;padding-right:28px;padding-top:20px; " class="dd"><table role="none" border="0" cellspacing="0" cellpadding="0" style="margin:0 auto 0 auto;"><tr><td align="center" valign="top" style="width:600px;"><img src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/uploads/asset/file/5e645313-03fe-4771-aa87-b53bb74de301/pipeline.png?t=1751386442" alt="" height="auto" width="600" style="display:block;width:100%;" border="0"/></td></tr></table></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> To optimize performance, the team adapted reinforcement learning for diffusion models. Traditional methods rely on inefficient Monte Carlo sampling for token probability estimates, increasing training overhead. Their solution, coupled-GRPO, generates pairs of complementary masked versions of the same code completion. Each token appears unmasked in one version, which ensures full coverage while reducing variance in probability calculations. This approach avoids semi-autoregressive decoding, preserving the model’s ability to refine code globally. </p></td></tr><tr><td id="evaluation-of-diffu-coder" class="dd" align="left" valign="top" style="color:#2A2A2A;font-weight:normal;padding:0px 28px;text-align:left;"><h3 style="color:#2A2A2A;font-weight:normal;mso-line-height-alt:125.0%;"><span style="color:rgb(67, 67, 67);">Evaluation of DiffuCoder </span></h3></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> The researchers of this paper tested DiffuCoder’s base model and achieved competitive results on code benchmarks. These models can match autoregressive models like OpenCoder (67.1% on HumanEval). Instruction tuning alone provided modest gains, but coupled-GRPO training significantly boosted performance: it <span style="font-weight:700;"><b>improved EvalPlus scores</b></span> by 4.4% using only 21,000 samples. The model also reduced its autoregressive bias, maintaining better accuracy even with half the decoding steps, effectively <span style="font-weight:700;"><b>doubling generation speed</b></span>. On BigCodeBench, coupled-GRPO increased pass rates by up to 5.6%, which demonstrates efficiency in complex tasks. </p></td></tr><tr><td align="center" valign="top" style="padding-bottom:20px;padding-left:28px;padding-right:28px;padding-top:20px; " class="dd"><table role="none" border="0" cellspacing="0" cellpadding="0" style="margin:0 auto 0 auto;"><tr><td align="center" valign="top" style="width:600px;"><img src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/uploads/asset/file/5209722a-96a8-4839-88e5-23345ba2147b/image.png?t=1751386566" alt="" height="auto" width="600" style="display:block;width:100%;" border="0"/></td></tr></table></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> These results show that dLLMs have potential for code generation. DiffuCoder has surpassed older diffusion-based approaches, by using temperature to diversify generation order and coupling masks for precise reinforcement learning. </p></td></tr><tr><td align="center" valign="top" style="padding:14px 32px 14px 32px;" class="dd"><a href="https://elink4f7.mail.bycloud.ai/ss/c/u001.VomAAYwkCjux8i_FMc4kJWZRWwDKcpJQOJpbROsLNbRiFb9CKqoUvZR_aCSo4FpHqFCDl08dCEYDgwmVPcf78YWMj2dkZZ96dn-6BTLhJ33wpI08KaDyvGpzCyzbPDa4/4ht/Vi_2DwfsSZ-AFzYkxdSuww/h13/h001.Zk8r-G6IOCd8yKMY-PeZf3dPXXaVvvmXTIVmB3KPDuY" style="text-decoration:none;" target="_blank"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" align="center" style="margin-bottom:12px;margin-top:12px;padding-left:12px;padding-right:12px;"><tr><td align="center" valign="top" class="o" style="padding:12px 12px 12px 12px;;background-color:#FFFFFF;border-color:#F1F1F1;border-radius:5px 5px 5px 5px;border-width:1px 1px 1px 1px;"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" align="center"><tr><!--[if mso]><td width="0"><table cellpadding="0" cellspacing="0" border="0" role="presentation" style="display:none;"><tr><![endif]--><td class="mob-stack embed-img" align="center" valign="top" style="width:35%;min-height:100px;vertical-align:middle;padding:0px 12px 0px 0px;"><a href="https://elink4f7.mail.bycloud.ai/ss/c/u001.VomAAYwkCjux8i_FMc4kJWZRWwDKcpJQOJpbROsLNbRiFb9CKqoUvZR_aCSo4FpHR2MhmUt2Sc90rHHdEYK5x3CFaZ4cUY8aRhezDa1r66tQ05VVTQX_T8A4GP8LU7xi/4ht/Vi_2DwfsSZ-AFzYkxdSuww/h14/h001.ml6CAp9hlFc6UMyXYt_sQ26hXbxuGcuTVVpl3WbmITI" style="text-decoration:none;" target="_blank"><img src="https://opengraph.githubassets.com/a2bd0f826c4d0b42592031b89e59e9db10aafc50d9fe32eb12be5dd8238aae97/apple/ml-diffucoder" width="100%" style="display:block;"/></a></td><!--[if mso]></tr></table></td><![endif]--><td class="mob-stack" align="center" valign="top" class="cc"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" align="center"><tr><td align="left" valign="top" class="l"><p>GitHub - apple/ml-diffucoder: DiffuCoder: Understanding and Improving Masked Diffusion Models for Code Generation</p></td></tr><tr><td align="left" valign="top" class="m"><p>DiffuCoder: Understanding and Improving Masked Diffusion Models for Code Generation - apple/ml-diffucoder</p></td></tr><tr><td align="left" valign="bottom" class="n" style="vertical-align:bottom;padding-top:12px;"><p style="word-break:break-word;">github.com/apple/ml-diffucoder</p></td></tr></table></td></tr></table></td></tr></table></a></td></tr><tr><td align="center" valign="top" style="padding-bottom:14px;padding-left:28px;padding-right:28px;padding-top:14px;text-align:center;width:100%;word-break:break-word;" class="dd"><table role="none" border="0" cellspacing="0" cellpadding="0" align="center" style="margin:14px auto 14px auto;"><tr><td align="center" valign="middle" height="44.75" style="height:44.75px;background-color:#2C81E5;border-color:#DFD150;border-radius:10px 10px 10px 10px;border-style:solid;border-width:0px 0px 0px 0px;color:#FFFFFF;font-family:'Open Sans','Segoe UI','Apple SD Gothic Neo','Lucida Grande','Lucida Sans Unicode',sans-serif;"><a href="https://elink4f7.mail.bycloud.ai/ss/c/u001.fUNb4GdFo9D3F8WuLArtoV5sElgytBlvJRzI9WtI92ZuxcpbyCQ-CIAwrGSjYcD0XJjkJ52qPMo5_PxlLZfM97z744sj3YVEj15vCU0pWjZYLgc9kXhTuvNbErDSCn1r/4ht/Vi_2DwfsSZ-AFzYkxdSuww/h15/h001.oWe2Eem-QmlkIzO9qqFBQcwZho5ZI6rUAppE4v96w4U" target="_blank" rel="noopener noreferrer nofollow" style="color:#FFFFFF;display:block;font-size:16px;font-size:16px;font-weight:normal;padding:0px 14px;padding:14px 14px 14px 14px;text-decoration:none;"> Read Full Paper </a></td></tr></table></td></tr><tr><td><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" style=""><tr><td bgcolor="#222222" style="background-color:#222222;padding:0.0px 0.0px 0.0px 0.0px;"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0"><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"></p></td></tr></table></td></tr></table></td></tr><tr><td id="machine-mental-imagery-empower-mult" class="dd" align="left" valign="top" style="color:#2A2A2A;font-weight:Bold;padding:0px 28px;text-align:left;"><h2 style="color:#2A2A2A;font-weight:Bold;mso-line-height-alt:150.0%;">Machine Mental Imagery: Empower Multimodal Reasoning with Latent Visual Tokens</h2></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"><span style=""><i>Yang et al. [University of Massachusetts, Massachusetts Institute of Technology]</i></span></p></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"><span style="background-color:#e0e0e0;"><span style="color:rgb(255, 58, 58);font-size:0.6rem;"> ♥ 732 </span></span><span style="color:rgb(44, 129, 229);font-size:0.6rem;"> </span><span style="background-color:#e0e0e0;"><span style="color:rgb(44, 129, 229);font-size:0.6rem;"> VLM </span></span></p></td></tr><tr><td id="introduction-to-machine-mental-imag" class="dd" align="left" valign="top" style="color:#2A2A2A;font-weight:normal;padding:0px 28px;text-align:left;"><h3 style="color:#2A2A2A;font-weight:normal;mso-line-height-alt:125.0%;"><span style="color:rgb(67, 67, 67);">Introduction to Machine Mental Imagery</span></h3></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> Vision-language models are pretty good at understanding images and text but they have an inherent limitation: they must translate every thought into words, even for tasks that demand visual imagination. This forces them to struggle with spatial reasoning, like solving a jigsaw puzzle by mentally matching piece contours, not describing each fragment. </p></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> Recent attempts to add image generation capabilities often compromise reasoning quality due to the heavy demands of pixel-level synthesis. This paper introduces <span style="font-weight:700;"><b>Mirage</b></span>, a new framework that bypasses explicit images entirely. Instead, it allows models to weave compact visual tokens into their reasoning, that mimicks human mental imagery for stronger performance without pixel overhead. </p></td></tr><tr><td align="center" valign="top" style="padding-bottom:20px;padding-left:28px;padding-right:28px;padding-top:20px; " class="dd"><table role="none" border="0" cellspacing="0" cellpadding="0" style="margin:0 auto 0 auto;"><tr><td align="center" valign="top" style="width:600px;"><img src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/uploads/asset/file/2a5f159a-32ef-4b48-a454-1a6d98085365/data_generation.png?t=1751386592" alt="" height="auto" width="600" style="display:block;width:100%;" border="0"/></td></tr><tr><td align="center" valign="top" class="t" style="width:600px; padding: 4px 0px 4px 0px;"><p>Data Generation</p></td></tr></table></td></tr><tr><td id="architecture-of-the-machine-mental-" class="dd" align="left" valign="top" style="color:#2A2A2A;font-weight:normal;padding:0px 28px;text-align:left;"><h3 style="color:#2A2A2A;font-weight:normal;mso-line-height-alt:125.0%;"><span style="color:rgb(67, 67, 67);">Architecture of the Machine Mental Imagery</span></h3></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> Mirage improves the vision-language models by letting them interleave latent visual tokens with ordinary text during decoding. When the model decides to "think visually," it generates a special token and reuses its current hidden state as a compact visual embedding. These embeddings act like simplified mental sketches, providing task-relevant cues for subsequent steps without generating full images. For example, in a navigation task, the model might insert a latent token to represent an imagined path arrow, then use it to plan the next move. This approach keeps reasoning lightweight and focused, avoiding the computational cost of external image decoders. </p></td></tr><tr><td align="center" valign="top" style="padding-bottom:20px;padding-left:28px;padding-right:28px;padding-top:20px; " class="dd"><table role="none" border="0" cellspacing="0" cellpadding="0" style="margin:0 auto 0 auto;"><tr><td align="center" valign="top" style="width:600px;"><img src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/uploads/asset/file/2f629891-fb01-4002-8d05-6e4fe0fc75f2/optimization.png?t=1751386604" alt="" height="auto" width="600" style="display:block;width:100%;" border="0"/></td></tr><tr><td align="center" valign="top" class="t" style="width:600px; padding: 4px 0px 4px 0px;"><p>Latent Grounding Supervision & Joint Optimization</p></td></tr></table></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> To train this capability, Mirage uses a two-stage process. First, it grounds the latent tokens in actual visual data. The model learns to predict text tokens while reconstructing compressed embeddings from real images, using a combination of cross-entropy loss for text and cosine similarity loss for the visual alignments. This ensures the latent tokens stay meaningful and anchored to visual concepts. After this anchoring phase, the second stage removes direct supervision for the latent tokens. Now, the model generates these tokens autonomously and uses them as flexible priors to guide text generation. This shift allows the latent tokens to adapt freely to the task, optimizing only for accurate text outputs. </p></td></tr><tr><td align="center" valign="top" style="padding-bottom:20px;padding-left:28px;padding-right:28px;padding-top:20px; " class="dd"><table role="none" border="0" cellspacing="0" cellpadding="0" style="margin:0 auto 0 auto;"><tr><td align="center" valign="top" style="width:600px;"><img src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/uploads/asset/file/5f76343a-f6a7-49eb-a8af-9a95adea5179/example_sat.png?t=1751386623" alt="" height="auto" width="600" style="display:block;width:100%;" border="0"/></td></tr><tr><td align="center" valign="top" class="t" style="width:600px; padding: 4px 0px 4px 0px;"><p>Sample output</p></td></tr></table></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> Finally, reinforcement learning fine-tunes the entire system. The model samples multiple reasoning trajectories, then optimizes for correctness and proper formatting. Gradients flow through both text and latent tokens, refining how visual cues influence decisions. This step boosts performance by encouraging the model to interleave tokens strategically, like placing a visual hint mid-thought to clarify a spatial relationship, which makes the reasoning more intuitive and effective. </p></td></tr><tr><td id="benchmark-performance-of-machine-me" class="dd" align="left" valign="top" style="color:#2A2A2A;font-weight:normal;padding:0px 28px;text-align:left;"><h3 style="color:#2A2A2A;font-weight:normal;mso-line-height-alt:125.0%;"><span style="color:rgb(67, 67, 67);">Benchmark Performance of Machine Mental Imagery</span></h3></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> Mirage was tested on diverse spatial reasoning benchmarks, including Visual-Spatial Planning (VSP), jigsaw puzzles, and SAT-style tasks. The results showed consistent improvements over text-only baselines. For example, on VSP navigation, Mirage achieved up to 89% accuracy, a 5% gain over chain-of-thought prompting and a 27% jump over zero-shot approaches. It also outperformed unified models like MVoT and Anole, which generate explicit images but falter in complex reasoning. Notably, these gains held even for smaller models, with a 3B-parameter version showing 10% improvements on SAT tasks. </p></td></tr><tr><td align="center" valign="top" style="padding-bottom:20px;padding-left:28px;padding-right:28px;padding-top:20px; " class="dd"><table role="none" border="0" cellspacing="0" cellpadding="0" style="margin:0 auto 0 auto;"><tr><td align="center" valign="top" style="width:600px;"><img src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/uploads/asset/file/1d7702da-a8fe-4d47-b3cf-603a33263cf9/results_1.png?t=1751386638" alt="" height="auto" width="600" style="display:block;width:100%;" border="0"/></td></tr><tr><td align="center" valign="top" class="t" style="width:600px; padding: 4px 0px 4px 0px;"><p>7B VSP benchmark results</p></td></tr></table></td></tr><tr><td class="dd" align="left" style="padding:0px 28px;text-align:left;word-break:break-word;"><p style="mso-line-height-alt:150.0%;"> Additional tests confirmed that both training stages are essential: skipping the initial visual grounding caused a 7% drop in accuracy, while omitting the adaptive second stage led to a 37% decline. The latent tokens themselves clustered near genuine visual embeddings, which validated their role as compact imagery. However, it still has a few limitations such as reliance on synthesized helper images for training, which could introduce noise. </p></td></tr><tr><td align="center" valign="top" style="padding-bottom:14px;padding-left:28px;padding-right:28px;padding-top:14px;text-align:center;width:100%;word-break:break-word;" class="dd"><table role="none" border="0" cellspacing="0" cellpadding="0" align="center" style="margin:14px auto 14px auto;"><tr><td align="center" valign="middle" height="44.75" style="height:44.75px;background-color:#2C81E5;border-color:#DFD150;border-radius:10px 10px 10px 10px;border-style:solid;border-width:0px 0px 0px 0px;color:#FFFFFF;font-family:'Open Sans','Segoe UI','Apple SD Gothic Neo','Lucida Grande','Lucida Sans Unicode',sans-serif;"><a href="https://elink4f7.mail.bycloud.ai/ss/c/u001.fUNb4GdFo9D3F8WuLArtoV5sElgytBlvJRzI9WtI92bjhTKGGko5bodO85vcSyR5jn55mr_ToPDdTbBYuXAVG1lO6uNLcKSnbxENTlkB559ephaS8keqXwTLUoHOMojt/4ht/Vi_2DwfsSZ-AFzYkxdSuww/h16/h001.iu25d0j9kfnUqwTMvWBo-sdmZAXAbn3aQJf1RvozlrQ" target="_blank" rel="noopener noreferrer nofollow" style="color:#FFFFFF;display:block;font-size:16px;font-size:16px;font-weight:normal;padding:0px 14px;padding:14px 14px 14px 14px;text-decoration:none;"> Read Full Paper </a></td></tr></table></td></tr><tr><td class="dd" align="center" valign="top" style="padding:20px;"><a href="https://elink4f7.mail.bycloud.ai/ss/c/u001.amatuKKICSickUKplYJXmN7M6WvYn6v7Yu1mpFkxlAGi-OT-t_yin9ooiOYFqVlGpkovs2iWWYzo5RKOwYfGAI5dt7fssoaVtI2NsinRJV9i3ZeIVhNBACxj_hDbcIPn/4ht/Vi_2DwfsSZ-AFzYkxdSuww/h17/h001.xjOl9co4qY_RTBWZbxm4fkmVKHWz8r_uTLVAUu0e_yU" style="text-decoration:none;"><table align="center" width="100%" cellpadding="0" cellspacing="0" border="0" role="none" style="max-width:520px;margin:0 auto;"><tr><td class="p" width="100%" style="padding:2px;border:none;"><table width="100%" cellpadding="0" cellspacing="0" border="0" role="none"><tr><td align="center" valign="top" style="width:100%;"><div style="max-height:0;position:relative;opacity:0.999;width:100%;mso-hide:all;"><div style="display:inline-block;width:100%;padding-top:25%;"><img width="20%" height="auto" loading="lazy" alt="" style="border:0;" src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/static_assets/youtube_play_icon.png"/></div></div><a href="https://elink4f7.mail.bycloud.ai/ss/c/u001.amatuKKICSickUKplYJXmN7M6WvYn6v7Yu1mpFkxlAFcIzH6CS92sIGd4vo9dVEGnW6M1o5p4NY7yTq-Oy1zvjMjWLVJbh-ejW3Z0LG0j-5ghhvlNTsWvu3d6SwHiC9p/4ht/Vi_2DwfsSZ-AFzYkxdSuww/h18/h001.rGz4bm1N2BAPAMxbr0hfq2Lc_pnVDn2MJqusXneG0q4" style="text-decoration:none;"><img src="https://i.ytimg.com/vi/G7ryb91BDG8/maxresdefault.jpg" width="480" height="auto" loading="lazy" alt="YouTube video by bycloud" style="display:block;height:auto;border:0;outline:none;text-decoration:none;background-color:#000000;width:100%;"/></a></td></tr><tr><td><p style="font-size:12px;font-weight:500;font-style:italic;font-family:Helvetica, Calibri, sans-serif;color: #686a6d; padding-top:0 !important;padding-bottom:6px !important; padding-left:4px !important;"> What If We Remove Tokenization In LLMs? </p></td></tr></table></td></tr></table></a></td></tr><tr><td class="dd" style="padding: 20px;"><table width="100%" cellpadding="0" cellspacing="0" role="none" style="max-width:520px;margin:0 auto;"><tr><td class="q" style="padding:16px 16px 6px 16px;"><a href="https://elink4f7.mail.bycloud.ai/ss/c/u001.tLfGW26lAwaS9gFg17HSoDDFT6eh5Nsg0xYVQj-h6I3o9m2k79_qw4izMYhmcI36UH1pNYJP8z6DQ6i4p_oeI4JgwlAtMGED18joMuOQaSaCmglO7eINv8PghwmhV98nKbZX-a64mmLTUYUmxveYk7s5KW5-opyXtNpIwLnWdco/4ht/Vi_2DwfsSZ-AFzYkxdSuww/h19/h001.QvWqNE2mWs3T_XHoDkDJWHhVfrenNFUxfPT_-PNOe3Q" style="text-decoration:none !important;"><table width="100%" cellpadding="0" cellspacing="0" border="0" role="none"><tr><td width="100%" style="padding: 0 0 14px 0;text-decoration:none;width:100%;"><table width="100%" cellpadding="0" cellspacing="0" border="0" role="none"><tr><td width="36" style="width:36px;"><img src="https://pbs.twimg.com/profile_images/1698572487909400576/BvncwnrP_normal.jpg" alt="tw profile: The AI Timeline" style="display:block;width:36px;height:36px;border-radius:50%;border:0;"/></td><td width="400" style="padding:0 0 0 8px;text-decoration:none;"><span style="display:block;font-size:14px;color:#1c2022;font-weight:700;"> The AI Timeline </span><span style="display:block;color:#697882;font-size:14px;"> @TheAITimeline </span></td><td width="24" align="right" style="vertical-align:text-top;"><img width="24" height="24" loading="lazy" alt="tw" style="border:0;" src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/static_assets/x_logo.png"/></td></tr></table></td></tr><tr></tr><tr><td style="word-break:break-word;"><p>🚨This week's top AI/ML research papers:</p><p>- RLPR <br>- OmniGen2 <br>- DiffuCoder <br>- ReasonFlux-PRM <br>- Unified Vision-Language-Action Model <br>- Machine Mental Imagery <br>- Vision as a Dialect <br>- jina-embeddings-v4 <br>- OMEGA <br>- SRFT <br>- Radial Attention <br>- Prover Agent <br>- WorldVLA <br>- 4D-LRM <br>-</p></td></tr><tr><td style="padding:12px 0 0 0;"></td></tr><tr><td align="center" style="padding:8px 0 0 0;width:480px;"><img src="https://pbs.twimg.com/media/Gup3IuYWQAAOvpz.jpg" width="480" height="auto" style="display:block;border:1px solid #E1E8ED;border-radius:5px;width:100%;max-width:480px;height:auto;"/></td></tr><tr><td height="8" style="line-height:1px;font-size:1px;height:8px;"> </td></tr><tr><td align="left" valign="top" class="s"><p>1:31 AM • Jun 30, 2025</p></td></tr><tr><td height="10" style="line-height: 1px; font-size: 1px; height: 10px;"> </td></tr><tr><td height="1" bgcolor="#e1e8ed" style="line-height:0px;font-size:0px;height:1px;"></td></tr><tr><td height="10" style="line-height:1px;font-size:1px;height:10px;"> </td></tr><tr><td align="left" valign="top" class="s"><p><b style="color:#1C2022">447</b> Likes <b style="color:#1C2022">60</b> Retweets </p></td></tr><tr><td align="left" valign="top" class="s"><div align="center" style="text-align:center;margin-top:4px;margin-bottom:4px;padding:8px;border:1px solid #ccd6dd;border-radius:9999px;color:#1B95E0"><b>2 Replies</b></div></td></tr></table></a></td></tr></table></td></tr></table></td></tr></table></td></tr><tr><td align="center" valign="top"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" align="center"><tr><td><tr><td class="b" align="center" valign="top" bgcolor="#2a2a2a" style="padding:0px 0px 0px 0px;border-style:solid;border-width: 0px 0px 0px 0px;border-color: #2a2a2a;border-bottom-left-radius:10px;border-bottom-right-radius:10px;"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" align="center"><tr><td align="center" valign="top" bgcolor="#73ddff" style="padding:12px"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" align="center"><tr><td><span style="padding-left:1px;"></span></td><td align="center" valign="middle" width="75" style="width:75px;"><a href="https://elink4f7.mail.bycloud.ai/ss/c/u001.1muhFWIqieRYpaJ-FbWSCQqcWoV4NNHHr5SkP9THApWuHAAlWLQxI3Q_IqFmt_DcyAxeC8jDApCnHmMSBGpBb5sgtimvBYgxRX-Rp7s0F3LjCHoSwdhr83OBqRFhJ1y_/4ht/Vi_2DwfsSZ-AFzYkxdSuww/h20/h001.phSL0e5hmOztO80y0Wxda7TvZwkl8y71BnX-8d87V1w" style="text-decoration:none;"><img width="22" height="22" alt="tw" border="0" style="display:block;max-width:22px;color:Dark" src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/static_assets/x_dark.png"/></a></td><td align="center" valign="middle" width="75" style="width:75px;"><a href="https://elink4f7.mail.bycloud.ai/ss/c/u001.amatuKKICSickUKplYJXmBoQnQ9VXnB2zTxBG4HeHBgjMqVxpoXRdj01cjwyoVlHgiebEOgBvwHtevoVpsSvpn3Q1di2ml6sb3cBM-X6IStQbj_zQSVGWJ8AAmPw2en2/4ht/Vi_2DwfsSZ-AFzYkxdSuww/h21/h001.IuGXhTLt0hKCpOIwwB1K5OODcF6IqI-srBfr1L6w5a8" style="text-decoration:none;"><img width="22" height="16" alt="yt" border="0" style="display:block;max-width:22px;color:Dark" src="https://media.beehiiv.com/cdn-cgi/image/fit=scale-down,format=auto,onerror=redirect,quality=80/static_assets/youtube_dark.png"/></a></td><td><span style="padding-left:1px;"></span></td></tr></table></td></tr><tr><td height="10" style="line-height:1px;font-size:1px;height:10px;"> </td></tr><tr><td class="w" align="center" valign="top" style="padding:15px 15px 15px 15px;"><table role="none" width="100%" border="0" cellspacing="0" cellpadding="0" align="center"><tr><td align="center" valign="top"><p style="font-family:'Verdana',Geneva,sans-serif;color:#FFFFFF!important;"> Update your email preferences or unsubscribe <a class="link" href="https://elink4f7.mail.bycloud.ai/ss/c/u001.c6q0w4g5sodbtO4I1B_pxWc4htTObwdorovK0nFHVH-4pUdVE0ELYH5DsNemk732SjNwhPNJ25r0O8B5vYifsBhEpz-DJgyVFmavJPa0OyKRRnvw4o7XGyvIv7PRofnmd1EqlySyw8-EYCdwBJDELsfmvdKSVXEcOY23sR4_lJZ2HtH6aKF1TPml4JppAVGUMaqOB4fT8mG3hCcFmow9LVbz-t-zZSDam6tiGksuvC_WM8iDsMkA649QCE1f8AchctMiqbhMF7AhlMCKkazlVia1f7akw7cOd4StmLUAf1UbN1YhKSOmo6TH20cM1hjpMhtRv_dWroX4Se-6kOlRZ8efmqNCe-DVxLlS1s6F3sfCOozspa0xwBDGfikejXr0tu-APqtY9yej6EMA789VciqqwK9NLtN97S8zuRaZHFs/4ht/Vi_2DwfsSZ-AFzYkxdSuww/h22/h001.jbEQWLV4AP1cKwWMWCzIA4USvRXQgftjKgbRa8TfLMg" style="text-decoration:underline;text-decoration-color:#FFFFFF!important;color:#FFFFFF!important;"> here</a></p><p class="copyright" style="font-family:'Verdana',Geneva,sans-serif;color:#FFFFFF!important;"> © 2025 bycloudai </p><p style="font-family:'Verdana',Geneva,sans-serif;color:#FFFFFF!important;"> 228 Park Ave S, #29976, New York, New York 10003, United States </p></td></tr><tr style="display: table-row !important;"><td align="center" valign="top" style="padding-top:20px;" style="display:table-cell !important;"><table role="none" border="0" cellspacing="0" cellpadding="0" align="center" style="display:table !important;"><tr style="display:table-row !important;"><td class="u" align="center" valign="middle" height="32" style="height:32px;display:table-cell !important; max-height: 32px !important;margin:0px !important; background-color: #ffffff !important;"><a style="line-height:32px !important;text-decoration:none;display:block !important;" href="https://elink4f7.mail.bycloud.ai/ss/c/u001.DUiN96-Eq7pUHzwEhy5j28olDWFpV5DDKfdk_OdOKOgaFFSxK2ZKWpZXIK-zlwHjnvBucKj5a8MllECDQkJsbk9TyTxTQ1yrdo0DyuIhFCBRY-ztaU8LX5bhZfX7X_ofjz4IQ8XhDRIs583kEPk4Body4wwHdNWzGMyx7ujRzthT72Tdhe4EjCN2bP1UVyYqTPDFtsKLL_myRvH_t3klGM2MWSPHAur_6Ki16Widl0uMyb7UunZSDTtAx7-_Xp5F/4ht/Vi_2DwfsSZ-AFzYkxdSuww/h23/h001.fpxYMCtAi2Abklrb0tyUA2GjJ-4WGWwPzo1YpLaOph8"><img src="https://media.beehiiv.com/output-onlinepngtools.png" width="16" alt="beehiiv logo" style="display:inline-block !important;max-width:16px !important; vertical-align:-3px !important;width: 16px !important;" border="0"/><span style="padding-left:11px !important;display: inline-block !important;">Powered by beehiiv</span></a></td></tr></table></td></tr><tr><td align="left" valign="top" height="2" style="height:2px;"><a href='https://elink4f7.mail.bycloud.ai/ss/c/u001.CxDkkVpJsBdVoe83c_tBWsHIaP4XNp0WgUYqLvHcKk_3uqk_KIkz4ddLinhFbud6JuxLFdSUhYnR7b1NSsmbtzXNGNblnEEMKUtkCAjkn8Y/4ht/Vi_2DwfsSZ-AFzYkxdSuww/h24/h001.eVJzoWx6f0B3AwPqmtGISval74DvtD47gKFkIl2xRiY' style="color: #2a2a2a !important; cursor: default; font-size: 1px; text-decoration: none;"> Terms of Service </a></td></tr></table></td></tr></table></td></tr></td></tr></table></td></tr></table></td></tr></table></td></tr></table></div></body></html>